Kimia Fisik


Larutan-1
Ditulis oleh Yoshito Takeuchi pada 11-08-2008

Fasa cair yang berupa sistem dua atau multi komponen, yakni larutan. Larutan terdiri atas cairan yang melarutkan zat (pelarut) dan zat yang larut di dalamnya (zat terlarut). Pelarut tidak harus cairan, tetapi dapat berupa padatan atau gas asal dapat melarutkan zat lain. Sistem semacam ini disebut sistem dispersi. Untuk sistem dispersi, zat yang berfungsi seperti pelarut disebut medium pendispersi, sementara zat yang berperan seperti zat terlarut disebut dengan zat terdispersi (dispersoid).

a. Konsentrasi
Konsentrasi larutan didefinisikan dengan salah satu dari ungkapan berikut:
Ungkapan konsentrasi
1.       persen massa (%) =(massa zat terlarut/ massa larutan) x 100
2.       molaritas (konsentrasi molar) (mol dm-3) =(mol zat terlarut)/(liter larutan)
3.       molalitas (mol kg-1) =(mol zat teralrut)/(kg pelarut)

Contoh soal:
Hitung jumlah perak nitrat AgNO3 yang diperlukan untuk membuat 0,500 dm3 larutan 0,150 mol.dm-3, asumsikan massa molar AgNO3 adalah 170 g mol-1.

Jawab:
Bila jumlah perak nitrat yang diperlukan x g, x = [170 g mol-1 x 0,500 (dm3) x 0,150 (mol dm-3)]/[1 (dm3) x 1 (dm3)]
x = 12,8 mg.
b. Tekanan uap

Tekanan uap cairan adalah salah satu sifat penting larutan. Tekanan uap larutan juga penting dan bermanfaat untuk mengidentifikasi larutan Tekanan uap komponen A, pA,diungkapkan sebagai:
pA = pA0 xA … (7.2)
pA0 adalah tekanan uap cairan A murni pada suhu yang sama. Hubungan yang mirip juga berlaku bagi tekanan uap B, pB. Hubungan ini ditemukan oleh kimiawan Perancis Francois Marie Raoult (1830-1901) dan disebut dengan hukum Raoult. Untuk larutan yang mengikuti hukum Raoult, interaksi antara molekul individual kedua komponen sama dengan interaksi antara molekul dalam tiap komponen. Larutan semacam ini disebut larutan ideal

Contoh soal:
Tekanan uap cairan A dan B adalah 15 Torr dan 40 Torr pada 25°C. tentukan tekanan uap larutan ideal yang terdiri atas 1 mol A dan 5 mol of B.
Jawab:
pA = pA0 xA = 15 x (1/6) = 2,5 Torr
pB = pB0 xB = 40 x (5/6) = 33,3 Torr P = pA + pB = 35,8 Torr

c. Larutan ideal dan nyata

Sebagaimana juga perilaku gas nyata berbeda dengan perilaku gas ideal, perilaku larutan nyata berebeda dengan perilaku larutan ideal, dengan kata lain berbeda dari hukum Raoult. Gambar 7.7(a) menunjukkan kurva tekanan uap sistem biner dua cairan yang cukup berbeda polaritasnya, aseton Me2CO dan karbon disulfida CS2. Dalam hal ini, penyimpangan positif dari hukum Raoult (tekanan uap lebih besar) diamati. Gambar 7.7(b) menunjukkan tekanan uap sistem biner aseton dan khloroform CHCl3. Dalam kasus ini, penyimpangan negatif dari hukum Raoult diamati. Garis putus-putus menunjukkan perilaku larutan ideal. Peilaku larutan mendekati ideal bila fraksi mol komponen mendekati 0 atau 1. Dengan menjauhnya fraksi mol dari 0 atau 1, penyimpangan dari ideal menjadi lebih besar, dan kurva tekanan uap akan mencapai minimum atau maksimum.

d. Kenaikan titik didih dan penurunan titik beku

Bila dibandingkan tekanan uap larutan pada suhu yang sama lebih rendah dari tekanan uap pelarutnya. Jadi, titik didih normal larutan, yakni suhu saat fasa gas pelarut mencapai 1 atm, harus lebih tinggi daripada titik didih pelarut. Fenomena ini disebut dengan kenaikan titik didih larutan.
Dengan menerapkan hukum Raoult pada larutan ideal, kita dapat memperoleh hubungan berikut:
pA = pA0 xA = pA0 [nA /(nA + nB)] …. (7.3)
(pA0- pA)/ pA0 = 1 – xA = xB … (7.4)
xA dan xB adalah fraksi mol, dan nA dan nB adalah jumlah mol tiap komponen. Persamaan ini menunjukkan bahwa, untuk larutan ideal dengan zat terlarut tidak mudah menguap, penurunan tekanan uap sebanding dengan fraksi mol zat terlarut.
Untuk larutan encer, yakni nA + nB hampir sama dengan nA, jumlah mol nB dan massa pada konsentrasi molal mB diberikan dalam ungkapan.
xB = nB/(nA + nB) = nB/nA= nB/(1/MA) = MAmB … (7.5)
MA adalah massa molar pelarut A. Untuk larutan encer, penurunan tekanan uap sebanding dengan mB, massa konsentrasi molal zat terlarut B.
Perbedaan titik didih larutan dan pelarut disebut dengan kenaikan titik didih, Tb. Untuk larutan encer, kenaikan titik didih sebanding dengan massa konsentrasi molal zat terlarut B.
Tb = Kb mB … (7.6)
Tetapan kesebandingan Kb khas untuk setiap pelarut dan disebut dengan kenaikan titik didih molal.
Hubungan yang mirip juga berlaku bila larutan ideal didinginkan sampai membeku. Titik beku larutan lebih rendah dari titik beku pelarut. Perbedaan antara titik beku larutan dan pelarut disebut penurunan titik beku, Tf. Untuk larutan encer penurunan titik beku akan sebanding dengan konsentrasi molal zat terlarut mB
Tf = Kf mB … (7.7)
Tetapan kesebandingannya Kb khas untuk tiap pelarut dan disebut dengan penurunan titik beku molal.
Tabel 7.3 Kenaikan titik didih dan penurunan titik beku molal.
pelarut
titik didih (°C)
Kb
pelarut
titik beku (°C)
Kf
CS2
46
2.40
H2O
0
1.86
aseton 55,9
1,69
benzen
5,1
5,07
benzen
79,8
2,54
asam asetat
16,3
3,9
H2O
100
0,51
kamfer
180
40
Contoh soal:  
Larutan dalam air terdiri atas 100 g H2O dan 5,12 g zat A (yang massa molekulnya tidak diketahui) membeku pada -0,280°C. Dengan menggunakan data di Tabel 7.3, tentukan massa molar A.
Jawab:
Massa molar A andaikan M. Dengan menggunakan persamaan 7.7, M dapat ditentukan dengan
0,280 = Kf x (m/M) x (1/W) = 1,86 x (5,12/M) x (1/0,11)
M = 340 g mol-1.

e. Tekanan osmosis

Bila larutan dan pelarut dipisahkan membran semipermeabel, diperlukan tekanan yang cukup besar agar pelarut bergerak dari larutan ke pelarut. Tekanan ini disebut dengan tekanan osmosis. Tekanan osmosis larutan 22,4 dm3 pelarut dan 1 mol zat terlarut pada 0 °C adalah 1,1 x 105 N m-2.
Hubungan antara konsentrasi dan tekanan osmoisi diberikan oleh hukum van’t Hoff’s.
πV = nRT … (7.8)
π adalah tekanan osmosis, V volume, T temperatur absolut, n jumlah zat (mol) dan R gas. Anda dapat melihat kemiripan formal antara persamaan ini dan persamaan keadaan gas. Sebagaimana kasus dalam persamaan gas, dimungkinkan menentukan massa molekular zat terlarut dari hubungan ini.
Contoh soal:
Tekanan osmosis larutan 60,0 g zat A dalam 1,00 dm3 air adalah 4,31 x 105 Nm–2. Tentukan massa molekul A.

Jawab:
Dengan menggunakan hubungan πV = nRT
4,31 x 105 (N m-2) x 1,00 x 10-3 (m3) = [60,0 (g) x 8,314 (J mol-1 K-1) x 298 (K)]/M (g mol–1)
M = 345 (g mol-1)

f. Viskositas

Gaya tarik menarik antarmolekul yang besar dalam cairan menghasilkan viskositas yang tinggi. Koefisien viskositas didefinisikan sebagai hambatan pada aliran cairan. Gas juga memiliki viskositas, tetapi nilainya sangat kecil. Dalam kasus tertentu viskositas gas memiliki peran penting, misalnya dalam peawat terbang.
Viskositas
1.       Viskositas cairan yang partikelnya besar dan berbentuk tak teratur lebih tinggo daripada yang partikelnya kecil dan bentuknya teratur.
2.       Semakin tinggi suhu cairan, semakin kecil viskositasnya.
Koefisien viskositas juga kadang secara singkat disebut dengan viskositas dan diungkapkan dalam N s m-2 dalam satuan SI. Bila sebuah bola berjari-jari r bergerak dalam cairan dengan viskositas ηdengan kecepatan U, hambatan D terhadap bola tadi diungkapkan sebagai.
D = 6πhrU … (7.9)
Hubungan ini (hukum Stokes) ditemukan oleh fisikawan Inggris Gabriel Stokes (1819-1903).
g. Tegangan permukaan

Tegangan permukaan juga merupakan sifat fisik yang berhubungan dengan gaya antarmolekul dalam cairan dan didefinisikan sebagai hambatan peningkatan luas permukaan cairan. Awalnya tegangan permukaan didefinisikan pada antarmuka cairan dan gas. Namun, tegangan yang mirip juga ada pada antarmuka cairan-cairan, atau padatan dan gas. Tegangan semacam ini secara umum disebut dengantegangan antarmuka.
Cairan naik dalam kapiler, fenomena kapiler, juga merupakan fenomena terkenal akibat adanya tegangan permukaan. Semakin besar tarikan antar molekul cairan dan kapilernya, semakin besar daya basah cairan. Bila gaya gravitasi pada cairan yang naik dan tarikan antara cairan dan dinding kapiler menjadi berimbang, kenaikan akan terhenti. Tegangan permukaan γ diungkapkan sebagai.
γ = rhdg/2 …. (7.10)
h adalah tinggi kenaikan cairan, r radius kapiler dan g percepatan gravitasi. Jadi, tegangan permukaan dapat ditentukan dengan percobaan.